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Figure 5.1 Electric charges exist all around us. They can cause objects to be repelled from each other or to be attracted to each
other. (credit: modification of work by Sean McGrath)
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Introduction
Back when we were studying Newton’s laws, we identified several physical phenomena as forces. We did so based on the
effect they had on a physical object: Specifically, they caused the object to accelerate. Later, when we studied impulse and
momentum, we expanded this idea to identify a force as any physical phenomenon that changed the momentum of an object.
In either case, the result is the same: We recognize a force by the effect that it has on an object.

In Gravitation (http://cnx.org/content/m58344/latest/) , we examined the force of gravity, which acts on all objects
with mass. In this chapter, we begin the study of the electric force, which acts on all objects with a property called charge.
The electric force is much stronger than gravity (in most systems where both appear), but it can be a force of attraction or a
force of repulsion, which leads to very different effects on objects. The electric force helps keep atoms together, so it is of
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fundamental importance in matter. But it also governs most everyday interactions we deal with, from chemical interactions
to biological processes.

5.1 | Electric Charge

Learning Objectives

By the end of this section, you will be able to:

• Describe the concept of electric charge

• Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones
to television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also
most likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s
take a look at some of these activities and see what we can learn from them about electric charges and forces.

Discoveries
You have probably experienced the phenomenon of static electricity: When you first take clothes out of a dryer, many (not
all) of them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you
take a woolen sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even
your hair. If you comb your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet,
you will find that the water stream bends toward (is attracted to) the comb (Figure 5.2).

Figure 5.2 An electrically charged comb attracts a stream of
water from a distance. Note that the water is not touching the
comb. (credit: Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling
to it (Figure 5.3). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any
nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the
wall. Probably the most annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling
your feet on some types of carpeting.
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Figure 5.3 After being used to comb hair, this comb attracts
small strips of paper from a distance, without physical contact.
Investigation of this behavior helped lead to the concept of the
electric force. (credit: Jane Whitney)

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624–546 BCE)
recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur,
a force was created that caused the fur and the amber to be attracted to each other (Figure 5.4). Additionally, he found that
the rubbed amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic)
objects, even if not in contact with those objects (Figure 5.5).

Figure 5.4 Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins.
When a piece of amber is rubbed with a piece of fur, the amber gains more electrons, giving it a
net negative charge. At the same time, the fur, having lost electrons, becomes positively charged.
(credit: “Sebakoamber”/Wikimedia Commons)
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Figure 5.5 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for
electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny
fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is
transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net
charges, but the absolute value of the net positive and negative charges will be equal.

The English physicist William Gilbert (1544–1603) also studied this attractive force, using various substances. He worked
with amber, and, in addition, he experimented with rock crystal and various precious and semi-precious gemstones. He also
experimented with several metals. He found that the metals never exhibited this force, whereas the minerals did. Moreover,
although an electrified amber rod would attract a piece of fur, it would repel another electrified amber rod; similarly, two
electrified pieces of fur would repel each other.

This suggested there were two types of an electric property; this property eventually came to be called electric charge. The
difference between the two types of electric charge is in the directions of the electric forces that each type of charge causes:
These forces are repulsive when the same type of charge exists on two interacting objects and attractive when the charges
are of opposite types. The SI unit of electric charge is the coulomb (C), after the French physicist Charles-Augustin de
Coulomb (1736–1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects in order to
cause an acceleration. This is an example of a so-called “long-range” force. (Or, as Albert Einstein later phrased it, “action
at a distance.”) With the exception of gravity, all other forces we have discussed so far act only when the two interacting
objects actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a “ Leyden jar,” which
was essentially a glass jar with two sheets of metal foil, one inside and one outside, with the glass between them (Figure
5.6). This created a large electric force between the two foil sheets.
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Figure 5.6 A Leyden jar (an early version of what is now
called a capacitor) allowed experimenters to store large amounts
of electric charge. Benjamin Franklin used such a jar to
demonstrate that lightning behaved exactly like the electricity he
got from the equipment in his laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of charge
remained motionless, while the other type of charge flowed from one piece of foil to the other. He further suggested that
an excess of what he called this “electrical fluid” be called “positive electricity” and the deficiency of it be called “negative
electricity.” His suggestion, with some minor modifications, is the model we use today. (With the experiments that he was
able to do, this was a pure guess; he had no way of actually determining the sign of the moving charge. Unfortunately, he
guessed wrong; we now know that the charges that flow are the ones Franklin labeled negative, and the positive charges
remain largely motionless. Fortunately, as we’ll see, it makes no practical or theoretical difference which choice we make,
as long as we stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

• The force acts without physical contact between the two objects.

• The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the force is
repulsive; if the charges are of opposite sign, the force is attractive. These interactions are referred to as electrostatic
repulsion and electrostatic attraction, respectively.

• Not all objects are affected by this force.

• The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the distance between
the two interacting objects increases. Thus, for example, when the distance between two interacting objects is doubled, the
force between them decreases to one fourth what it was in the original system. We can also observe that the surroundings of
the charged objects affect the magnitude of the force. However, we will explore this issue in a later chapter.

Properties of Electric Charge
In addition to the existence of two types of charge, several other properties of charge have been discovered.
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• Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest possible

amount of charge that an object can have. In the SI system, this smallest amount is e ≡ 1.602 × 10−19 C . No free

particle can have less charge than this, and, therefore, the charge on any object—the charge on all objects—must
be an integer multiple of this amount. All macroscopic, charged objects have charge because electrons have either
been added or taken away from them, resulting in a net charge.

• The magnitude of the charge is independent of the type. Phrased another way, the smallest possible positive

charge (to four significant figures) is +1.602 × 10−19 C , and the smallest possible negative charge is

−1.602 × 10−19 C ; these values are exactly equal. This is simply how the laws of physics in our universe turned

out.

• Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place to place,
from one object to another. Frequently, we speak of two charges “canceling”; this is verbal shorthand. It means that
if two objects that have equal and opposite charges are physically close to each other, then the (oppositely directed)
forces they apply on some other charged object cancel, for a net force of zero. It is important that you understand
that the charges on the objects by no means disappear, however. The net charge of the universe is constant.

• Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab bench and
reappeared on the Moon, conservation of charge would still hold. However, this never happens. If the total charge
you have in your local system on your lab bench is changing, there will be a measurable flow of charge into or out
of the system. Again, charges can and do move around, and their effects can and do cancel, but the net charge in
your local environment (if closed) is conserved. The last two items are both referred to as the law of conservation
of charge.

The Source of Charges: The Structure of the Atom
Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly became clear that
the constituents of the atom included both positively charged particles and negatively charged particles. The next question
was, what are the physical properties of those electrically charged particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson was studying
what was then known as cathode rays. Some years before, the English physicist William Crookes had shown that these
“rays” were negatively charged, but his experiments were unable to tell any more than that. (The fact that they carried a
negative electric charge was strong evidence that these were not rays at all, but particles.) Thomson prepared a pure beam of
these particles and sent them through crossed electric and magnetic fields, and adjusted the various field strengths until the
net deflection of the beam was zero. With this experiment, he was able to determine the charge-to-mass ratio of the particle.
This ratio showed that the mass of the particle was much smaller than that of any other previously known particle—1837
times smaller, in fact. Eventually, this particle came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and negative charges
are distributed within the atom. Thomson himself imagined that his electrons were embedded within a sort of positively
charged paste, smeared out throughout the volume of the atom. However, in 1908, the New Zealand physicist Ernest
Rutherford showed that the positive charges of the atom existed within a tiny core—called a nucleus—that took up only
a very tiny fraction of the overall volume of the atom, but held over 99% of the mass. (See Linear Momentum and
Collisions (http://cnx.org/content/m58317/latest/) .) In addition, he showed that the negatively charged electrons
perpetually orbited about this nucleus, forming a sort of electrically charged cloud that surrounds the nucleus (Figure 5.7).
Rutherford concluded that the nucleus was constructed of small, massive particles that he named protons.

186 Chapter 5 | Electric Charges and Fields

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

http://cnx.org/content/m58317/latest/
http://cnx.org/content/m58317/latest/


Figure 5.7 This simplified model of a hydrogen atom shows a
positively charged nucleus (consisting, in the case of hydrogen, of a
single proton), surrounded by an electron “cloud.” The charge of the
electron cloud is equal (and opposite in sign) to the charge of the
nucleus, but the electron does not have a definite location in space;
hence, its representation here is as a cloud. Normal macroscopic
amounts of matter contain immense numbers of atoms and
molecules, and, hence, even greater numbers of individual negative
and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically neutral, it was
natural to suppose that different atoms have different numbers of protons in their nucleus, with an equal number of
negatively charged electrons orbiting about the positively charged nucleus, thus making the atoms overall electrically
neutral. However, it was soon discovered that although the lightest atom, hydrogen, did indeed have a single proton as its
nucleus, the next heaviest atom—helium—has twice the number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the neutron. The
neutron is, essentially, an electrically neutral twin of the proton, with no electric charge, but (nearly) identical mass to the
proton. The helium nucleus therefore has two neutrons along with its two protons. (Later experiments were to show that
although the neutron is electrically neutral overall, it does have an internal charge structure. Furthermore, although the
masses of the neutron and the proton are nearly equal, they aren’t exactly equal: The neutron’s mass is very slightly larger
than the mass of the proton. That slight mass excess turned out to be of great importance. That, however, is a story that will
have to wait until our study of modern physics in Nuclear Physics (http://cnx.org/content/m58606/latest/) .)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons and neutrons,
surrounded by a collection of electrons whose combined motion formed a sort of negatively charged “cloud” around the
nucleus (Figure 5.8). In an electrically neutral atom, the total negative charge of the collection of electrons is equal to the
total positive charge in the nucleus. The very low-mass electrons can be more or less easily removed or added to an atom,
changing the net charge on the atom (though without changing its type). An atom that has had the charge altered in this way
is called an ion. Positive ions have had electrons removed, whereas negative ions have had excess electrons added. We also
use this term to describe molecules that are not electrically neutral.

Chapter 5 | Electric Charges and Fields 187

http://cnx.org/content/m58606/latest/


Figure 5.8 The nucleus of a carbon atom is composed of six
protons and six neutrons. As in hydrogen, the surrounding six
electrons do not have definite locations and so can be considered to
be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more subatomic particles
were discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others. With the exception of the photon,
none of these particles are directly relevant to the study of electromagnetism, so we defer further discussion of them until
the chapter on particle physics (Particle Physics and Cosmology (http://cnx.org/content/m58767/latest/) ).

A Note on Terminology
As noted previously, electric charge is a property that an object can have. This is similar to how an object can have a
property that we call mass, a property that we call density, a property that we call temperature, and so on. Technically, we
should always say something like, “Suppose we have a particle that carries a charge of 3 µC. ” However, it is very common

to say instead, “Suppose we have a 3-µC charge.” Similarly, we often say something like, “Six charges are located at the

vertices of a regular hexagon.” A charge is not a particle; rather, it is a property of a particle. Nevertheless, this terminology
is extremely common (and is frequently used in this book, as it is everywhere else). So, keep in the back of your mind what
we really mean when we refer to a “charge.”

5.2 | Conductors, Insulators, and Charging by Induction

Learning Objectives

By the end of this section, you will be able to:

• Explain what a conductor is

• Explain what an insulator is

• List the differences and similarities between conductors and insulators

• Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic materials and never
on metals. To understand why this is the case, you have to understand more about the nature and structure of atoms. In this
section, we discuss how and why electric charges do—or do not—move through materials (Figure 5.9). A more complete
description is given in a later chapter.
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Figure 5.9 This power adapter uses metal wires and connectors to conduct electricity from the
wall socket to a laptop computer. The conducting wires allow electrons to move freely through the
cables, which are shielded by rubber and plastic. These materials act as insulators that don’t allow
electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia
Commons)

Conductors and Insulators
As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast cloud of
negative charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the most commonly used
conductor, copper.

For reasons that will become clear in Atomic Structure (http://cnx.org/content/m58583/latest/) , there is an
outermost electron that is only loosely bound to the atom’s nucleus. It can be easily dislodged; it then moves to a
neighboring atom. In a large mass of copper atoms (such as a copper wire or a sheet of copper), these vast numbers
of outermost electrons (one per atom) wander from atom to atom, and are the electrons that do the moving when
electricity flows. These wandering, or “free,” electrons are called conduction electrons, and copper is therefore an excellent
conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one or two
conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great difficulty, if
at all. Even if excess charge is added to an insulating material, it cannot move, remaining indefinitely in place. This is why
insulating materials exhibit the electrical attraction and repulsion forces described earlier, whereas conductors do not; any
excess charge placed on a conductor would instantly flow away (due to mutual repulsion from existing charges), leaving
no excess charge around to create forces. Charge cannot flow along or through an insulator, so its electric forces remain
for long periods of time. (Charge will dissipate from an insulator, given enough time.) As it happens, amber, fur, and most
semi-precious gems are insulators, as are materials like wood, glass, and plastic.

Charging by Induction
Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close to it. As
mentioned, the conduction electrons in the conductor are able to move with nearly complete freedom. As a result, when a
charged insulator (such as a positively charged glass rod) is brought close to the conductor, the (total) charge on the insulator
exerts an electric force on the conduction electrons. Since the rod is positively charged, the conduction electrons (which
themselves are negatively charged) are attracted, flowing toward the insulator to the near side of the conductor (Figure
5.10).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they are still in
the conducting material. However, the conductor now has a charge distribution; the near end (the portion of the conductor
closest to the insulator) now has more negative charge than positive charge, and the reverse is true of the end farthest from
the insulator. The relocation of negative charges to the near side of the conductor results in an overall positive charge in the
part of the conductor farthest from the insulator. We have thus created an electric charge distribution where one did not exist
before. This process is referred to as inducing polarization—in this case, polarizing the conductor. The resulting separation
of positive and negative charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to
be polarized. A similar situation occurs with a negatively charged insulator, but the resulting polarization is in the opposite
direction.
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Figure 5.10 Induced polarization. A positively charged glass
rod is brought near the left side of the conducting sphere,
attracting negative charge and leaving the other side of the
sphere positively charged. Although the sphere is overall still
electrically neutral, it now has a charge distribution, so it can
exert an electric force on other nearby charges. Furthermore, the
distribution is such that it will be attracted to the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The presence of
electric charges on the insulator—and the electric forces they apply to the conduction electrons—creates, or “induces,” the
dipole in the conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for
example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 5.11
shows how the polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

Figure 5.11 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object
brought near a neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the
molecule, with unlike charges being brought nearer and like charges moved away. Since the electrostatic force decreases with
distance, there is a net attraction. (b) A negative object produces the opposite polarization, but again attracts the neutral object.
(c) The same effect occurs for a conductor; since the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and
molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since
the electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges,
and so there is a net attraction. Thus, a positively charged glass rod attracts neutral pieces of paper, as will a negatively
charged rubber rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation
of charge, although they are neutral overall. Polar molecules are particularly affected by other charged objects and show
greater polarization effects than molecules with naturally uniform charge distributions.

When the two ends of a dipole can be separated, this method of charging by induction may be used to create charged
objects without transferring charge. In Figure 5.12, we see two neutral metal spheres in contact with one another but
insulated from the rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that
side, leaving the other sphere positively charged.
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Figure 5.12 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each
other but insulated from the rest of the world. (b) A positively charged glass rod is brought near the sphere
on the left, attracting negative charge and leaving the other sphere positively charged. (c) The spheres are
separated before the rod is removed, thus separating negative and positive charges. (d) The spheres retain
net charges after the inducing rod is removed—without ever having been touched by a charged object.

Another method of charging by induction is shown in Figure 5.13. The neutral metal sphere is polarized when a charged
rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground.
Since Earth is large and most of the ground is a good conductor, it can supply or accept excess charge easily. In this case,
electrons are attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the
ground. The ground connection is broken before the charged rod is removed, leaving the sphere with an excess charge
opposite to that of the rod. Again, an opposite charge is achieved when charging by induction, and the charged rod loses
none of its excess charge.
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Figure 5.13 Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal
sphere, polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground
connection is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.

5.3 | Coulomb's Law

Learning Objectives

By the end of this section, you will be able to:

• Describe the electric force, both qualitatively and quantitatively

• Calculate the force that charges exert on each other

• Determine the direction of the electric force for different source charges

• Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force
on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional
to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The
direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges
involved.

Let

• q1, q2 = the net electric charges of the two objects;

• r→ 12 = the vector displacement from q1 to q2 .

The electric force F→ on one of the charges is proportional to the magnitude of its own charge and the magnitude of the

other charge, and is inversely proportional to the square of the distance between them:

F ∝ q1 q2
r12

2 .

This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that will become
clear in a later chapter, the proportionality constant that we use is actually a collection of constants. (We discuss this constant
shortly.)

Coulomb’s Law

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal to
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(5.1)
F→ 12(r) = 1

4πε0
|q1 q2|

r12
2 r‸ 12

We use absolute value signs around the product q1 q2 because one of the charges may be negative, but the magnitude

of the force is always positive. The direction of the force vector depends on the sign of the charges. If the charges are
the same, the force points away from the other charge. If the charges have different signs, the force points toward the
other charge(Figure 5.14).

Figure 5.14 The electrostatic force F→ between point charges q1 and q2
separated by a distance r is given by Coulomb’s law. Note that Newton’s third law
(every force exerted creates an equal and opposite force) applies as usual—the force on
q1 is equal in magnitude and opposite in direction to the force it exerts on q2 . (a)

Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between the two

charges. If either the test charge or the source charge (or both) move, then r→ changes, and therefore so does the force. An

immediate consequence of this is that direct application of Newton’s laws with this force can be mathematically difficult,
depending on the specific problem at hand. It can (usually) be done, but we almost always look for easier methods of
calculating whatever physical quantity we are interested in. (Conservation of energy is the most common choice.)

Finally, the new constant ε0 in Coulomb’s law is called the permittivity of free space, or (better) the permittivity of

vacuum. It has a very important physical meaning that we will discuss in a later chapter; for now, it is simply an empirical
proportionality constant. Its numerical value (to three significant figures) turns out to be

ε0 = 8.85 × 10−12 C2

N · m2.

These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s law, the
permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a Coulomb’s constant:

ke = 1
4πε0

= 8.99 × 109 N · m2

C2 .

Example 5.1

The Force on the Electron in Hydrogen

A hydrogen atom consists of a single proton and a single electron. The proton has a charge of +e and the

electron has −e . In the “ground state” of the atom, the electron orbits the proton at most probable distance of

5.29 × 10−11 m (Figure 5.15). Calculate the electric force on the electron due to the proton.
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5.1

Figure 5.15 A schematic depiction of a hydrogen atom,
showing the force on the electron. This depiction is only to
enable us to calculate the force; the hydrogen atom does not
really look like this. Recall Figure 5.7.

Strategy

For the purposes of this example, we are treating the electron and proton as two point particles, each with an
electric charge, and we are told the distance between them; we are asked to calculate the force on the electron.
We thus use Coulomb’s law.

Solution

Our two charges and the distance between them are,

q1 = +e = +1.602 × 10−19 C

q2 = −e = −1.602 × 10−19 C

r = 5.29 × 10−11 m.

The magnitude of the force on the electron is

F = 1
4πϵ0

|e|2

r2 = 1
4π⎛

⎝8.85 × 10−12 C2

N · m2
⎞
⎠

⎛
⎝1.602 × 10−19 C⎞

⎠
2

⎛
⎝5.29 × 10−11 m⎞

⎠
2 = 8.25 × 10−8 N.

As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the
electron points radially directly toward the proton, everywhere in the electron’s orbit. The force is thus expressed
as

F→ = ⎛
⎝8.25 × 10−8 N⎞

⎠ r̂ .

Significance

This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an
imaginary spherical shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic
force on the electron points in the inward centripetal direction, thus maintaining the electron’s orbit. But note that
the quantum mechanical model of hydrogen (discussed in Quantum Mechanics (http://cnx.org/content/
m58573/latest/) ) is utterly different.

Check Your Understanding What would be different if the electron also had a positive charge?
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Multiple Source Charges
The analysis that we have done for two particles can be extended to an arbitrary number of particles; we simply repeat the
analysis, two charges at a time. Specifically, we ask the question: Given N charges (which we refer to as source charge),
what is the net electric force that they exert on some other point charge (which we call the test charge)? Note that we use
these terms because we can think of the test charge being used to test the strength of the force provided by the source
charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of each
individual electric force exerted on it by each of the individual test charges. Thus, we can calculate the net force on the test
charge Q by calculating the force on it from each source charge, taken one at a time, and then adding all those forces together
(as vectors). This ability to simply add up individual forces in this way is referred to as the principle of superposition, and
is one of the more important features of the electric force. In mathematical form, this becomes

(5.2)
F→ (r) = 1

4πε0
Q ∑

i = 1

N qi
ri

2 r̂ i.

In this expression, Q represents the charge of the particle that is experiencing the electric force F→ , and is located at r→

from the origin; the qi ’s are the N source charges, and the vectors r→ i = ri r̂ i are the displacements from the position

of the ith charge to the position of Q. Each of the N unit vectors points directly from its associated source charge toward the
test charge. All of this is depicted in Figure 5.16. Please note that there is no physical difference between Q and qi ; the

difference in labels is merely to allow clear discussion, with Q being the charge we are determining the force on.

Figure 5.16 The eight source charges each apply a force on the
single test charge Q. Each force can be calculated independently
of the other seven forces. This is the essence of the superposition
principle.

(Note that the force vector F→ i does not necessarily point in the same direction as the unit vector r̂ i ; it may point in

the opposite direction, − r̂ i . The signs of the source charge and test charge determine the direction of the force on the test

charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by Newton’s third
law) does the test charge exert an equal and opposite force on each of the source charges. As a consequence, each source
charge would change position. However, by Equation 5.2, the force on the test charge is a function of position; thus, as
the positions of the source charges change, the net force on the test charge necessarily changes, which changes the force,
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which again changes the positions. Thus, the entire mathematical analysis quickly becomes intractable. Later, we will learn
techniques for handling this situation, but for now, we make the simplifying assumption that the source charges are fixed
in place somehow, so that their positions are constant in time. (The test charge is allowed to move.) With this restriction in
place, the analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of
the source charges and the force is referred to as an electrostatic force.

Example 5.2

The Net Force from Two Source Charges

Three different, small charged objects are placed as shown in Figure 5.17. The charges q1 and q3 are fixed

in place; q2 is free to move. Given q1 = 2e , q2 = −3e , and q3 = −5e , and that d = 2.0 × 10−7 m , what is

the net force on the middle charge q2 ?

Figure 5.17 Source charges q1 and q3 each apply a force

on q2 .

Strategy

We use Coulomb’s law again. The way the question is phrased indicates that q2 is our test charge, so that q1 and

q3 are source charges. The principle of superposition says that the force on q2 from each of the other charges

is unaffected by the presence of the other charge. Therefore, we write down the force on q2 from each and add

them together as vectors.

Solution

We have two source charges (q1 and q3), a test charge (q2), distances (r21 and r23), and we are asked to

find a force. This calls for Coulomb’s law and superposition of forces. There are two forces:

F→ = F→ 21 + F→ 23 = 1
4πε0

⎡

⎣
⎢q2 q1

r21
2 j

^
+

⎛

⎝
⎜−q2 q3

r23
2 i

^⎞

⎠
⎟
⎤

⎦
⎥.

We can’t add these forces directly because they don’t point in the same direction: F→ 12 points only in

the −x-direction, while F→ 13 points only in the +y-direction. The net force is obtained from applying the

Pythagorean theorem to its x- and y-components:

F = Fx
2 + Fy

2

where
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5.2

Fx = −F23 = − 1
4πε0

q2 q3
r23

2

= −⎛
⎝8.99 × 109 N · m2

C2
⎞
⎠

⎛
⎝4.806 × 10−19 C⎞

⎠
⎛
⎝8.01 × 10−19 C⎞

⎠

⎛
⎝4.00 × 10−7 m⎞

⎠
2

= −2.16 × 10−14 N

and

Fy = F21 = 1
4πε0

q2 q1
r21

2

= ⎛
⎝8.99 × 109 N · m2

C2
⎞
⎠

⎛
⎝4.806 × 10−19 C⎞

⎠
⎛
⎝3.204 × 10−19 C⎞

⎠

⎛
⎝2.00 × 10−7 m⎞

⎠
2

= 3.46 × 10−14 N.

We find that

F = Fx
2 + Fy

2 = 4.08 × 10−14 N

at an angle of

ϕ = tan−1 ⎛
⎝

Fy
Fx

⎞
⎠ = tan−1 ⎛

⎝
3.46 × 10−14 N

−2.16 × 10−14 N
⎞
⎠ = −58°,

that is, 58° above the −x-axis, as shown in the diagram.

Significance

Notice that when we substituted the numerical values of the charges, we did not include the negative sign of
either q2 or q3 . Recall that negative signs on vector quantities indicate a reversal of direction of the vector in

question. But for electric forces, the direction of the force is determined by the types (signs) of both interacting
charges; we determine the force directions by considering whether the signs of the two charges are the same or
are opposite. If you also include negative signs from negative charges when you substitute numbers, you run the
risk of mathematically reversing the direction of the force you are calculating. Thus, the safest thing to do is to
calculate just the magnitude of the force, using the absolute values of the charges, and determine the directions
physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces; everything
else (getting the net force from its components, breaking the forces into their components, finding the direction
of the net force) is the same as force problems you have done earlier.

Check Your Understanding What would be different if q1 were negative?

5.4 | Electric Field

Learning Objectives

By the end of this section, you will be able to:

• Explain the purpose of the electric field concept

• Describe the properties of the electric field

• Calculate the field of a collection of source charges of either sign
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As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces
acting on it, from all of the various source charges, located at their various positions. But what if we use a different test
charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try
at the same location? We would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a
quantity, called the electric field, which is independent of the test charge. It only depends on the configuration of the source
charges, and once found, allows us to calculate the force on any test charge.

Defining a Field
Suppose we have N source charges q1, q2, q3 ,…, qN located at positions r→ 1, r→ 2, r→ 3 ,…, r→ N , applying N

electrostatic forces on a test charge Q. The net force on Q is (see Equation 5.2)

F→ = F→ 1 + F→ 2 + F→ 3 + ⋯ + F→ N

= 1
4πε0

⎛

⎝
⎜Qq1

r1
2 r̂ 1 + Qq2

r2
2 r̂ 2 + Qq3

r3
2 r̂ 3 + ⋯ + QqN

r1
2 r̂ N

⎞

⎠
⎟

= Q
⎡

⎣
⎢ 1
4πε0

⎛

⎝
⎜q1
r1

2 r̂ 1 + q2
r2

2 r̂ 2 + q3
r3

2 r̂ 3 + ⋯ + qN
r1

2 r̂ N
⎞

⎠
⎟
⎤

⎦
⎥.

We can rewrite this as

(5.3)F→ = Q E→

where

E→ ≡ 1
4πε0

⎛

⎝
⎜q1
r1

2 r̂ 1 + q2
r2

2 r̂ 2 + q3
r3

2 r̂ 3 + ⋯ + qN
r1

2 r̂ N
⎞

⎠
⎟

or, more compactly,

(5.4)
E→ (P) ≡ 1

4πε0
∑
i = 1

N qi
ri

2 r̂ i.

This expression is called the electric field at position P = P(x, y, z) of the N source charges. Here, P is the location of the

point in space where you are calculating the field and is relative to the positions r→ i of the source charges (Figure 5.18).

Note that we have to impose a coordinate system to solve actual problems.
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Figure 5.18 Each of these eight source charges creates its own
electric field at every point in space; shown here are the field vectors
at an arbitrary point P. Like the electric force, the net electric field
obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is
to calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges
experience different forces Equation 5.3, but it is the same electric field Equation 5.4. That being said, recall that there
is no fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of
interest. Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge
is not subject to a force due to the electric field it generates. Charges are only subject to forces from the electric fields of
other charges.

In this respect, the electric field E→ of a point charge is similar to the gravitational field g→ of Earth; once we have

calculated the gravitational field at some point in space, we can use it any time we want to calculate the resulting force
on any mass we choose to place at that point. In fact, this is exactly what we do when we say the gravitational field of

Earth (near Earth’s surface) has a value of 9.81 m/s2, and then we calculate the resulting force (i.e., weight) on different

masses. Also, the general expression for calculating g→ at arbitrary distances from the center of Earth (i.e., not just near

Earth’s surface) is very similar to the expression for E→ : g→ = GM
r2 r̂ , where G is a proportionality constant, playing

the same role for g→ as 1
4πε0

does for E→ . The value of g→ is calculated once and is then used in an endless number

of problems.

To push the analogy further, notice the units of the electric field: From F = QE , the units of E are newtons per coulomb,

N/C, that is, the electric field applies a force on each unit charge. Now notice the units of g: From w = mg , the units of

g are newtons per kilogram, N/kg, that is, the gravitational field applies a force on each unit mass. We could say that the
gravitational field of Earth, near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field”
Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in physics, is a
physical quantity whose value depends on (is a function of) position, relative to the source of the field. In the case of the

electric field, Equation 5.4 shows that the value of E→ (both the magnitude and the direction) depends on where in space

the point P is located, measured from the locations r→ i of the source charges qi .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The gravitational
field is also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar field. The temperature in
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a room is an example of a scalar field. It is a field because the temperature, in general, is different at different locations in
the room, and it is a scalar field because temperature is a scalar quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a charge-bearing
object (the source charge) as a continuous, immaterial substance that surrounds the source charge, filling all of space—in
principle, to ±∞ in all directions. The field exists at every physical point in space. To put it another way, the electric charge

on an object alters the space around the charged object in such a way that all other electrically charged objects in space
experience an electric force as a result of being in that field. The electric field, then, is the mechanism by which the electric
properties of the source charge are transmitted to and through the rest of the universe. (Again, the range of the electric force
is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the speed of light.
There is a deep connection between the electric field and light.

Superposition
Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that means that we
can (in principle) calculate the total electric field of many source charges by calculating the electric field of only q1 at

position P, then calculate the field of q2 at P, while—and this is the crucial idea—ignoring the field of, and indeed even

the existence of, q1. We can repeat this process, calculating the field of each individual source charge, independently of

the existence of any of the other charges. The total electric field, then, is the vector sum of all these fields. That, in essence,
is what Equation 5.4 says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution and how to
sketch it.

The Direction of the Field
Equation 5.4 enables us to determine the magnitude of the electric field, but we need the direction also. We use the
convention that the direction of any electric field vector is the same as the direction of the electric force vector that the field
would apply to a positive test charge placed in that field. Such a charge would be repelled by positive source charges (the
force on it would point away from the positive source charge) but attracted to negative charges (the force points toward the
negative source).

Direction of the Electric Field

By convention, all electric fields E→ point away from positive source charges and point toward negative source

charges.

Add charges to the Electric Field of Dreams (https://openstaxcollege.org/l/21elefiedream) and see how
they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

Example 5.3

The E-field of an Atom

In an ionized helium atom, the most probable distance between the nucleus and the electron is

r = 26.5 × 10−12 m . What is the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric
field, not a force; hence, there is only one charge involved, and the problem specifically asks for the field due to
the nucleus. Thus, the electron is a red herring; only its distance matters. Also, since the distance between the two
protons in the nucleus is much, much smaller than the distance of the electron from the nucleus, we can treat the
two protons as a single charge +2e (Figure 5.19).
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Figure 5.19 A schematic representation of a helium atom.
Again, helium physically looks nothing like this, but this sort of
diagram is helpful for calculating the electric field of the
nucleus.

Solution

The electric field is calculated by

E→ = 1
4πε0

∑
i = 1

N qi
ri

2 r̂ i.

Since there is only one source charge (the nucleus), this expression simplifies to

E→ = 1
4πε0

q
r2 r̂ .

Here q = 2e = 2⎛
⎝1.6 × 10−19 C⎞

⎠ (since there are two protons) and r is given; substituting gives

E→ = 1
4π⎛

⎝8.85 × 10−12 C2

N · m2
⎞
⎠

2⎛
⎝1.6 × 10−19 C⎞

⎠

⎛
⎝26.5 × 10−12 m⎞

⎠
2 r̂ = 4.1 × 1012 N

C r̂ .

The direction of E→ is radially away from the nucleus in all directions. Why? Because a positive test charge

placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and again,
the convention is that the direction of the electric field vector is defined in terms of the direction of the force it
would apply to positive test charges.

Example 5.4

The E-Field above Two Equal Charges

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges
+q that are a distance d apart (Figure 5.20). Check that your result is consistent with what you’d expect when

z ≫ d .

(b) The same as part (a), only this time make the right-hand charge −q instead of +q .
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Figure 5.20 Finding the field of two identical source charges
at the point P. Due to the symmetry, the net field at P is entirely
vertical. (Notice that this is not true away from the midline
between the charges.)

Strategy

We add the two fields as vectors, per Equation 5.4. Notice that the system (and therefore the field) is
symmetrical about the vertical axis; as a result, the horizontal components of the field vectors cancel. This
simplifies the math. Also, we take care to express our final answer in terms of only quantities that are given in the
original statement of the problem: q, z, d, and constants (π, ε0).

Solution

a. By symmetry, the horizontal (x)-components of E→ cancel (Figure 5.21);

Ex = 1
4πε0

q
r2 sin θ − 1

4πε0

q
r2 sin θ = 0 .

Figure 5.21 Note that the horizontal components of the
electric fields from the two charges cancel each other out, while
the vertical components add together.
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The vertical (z)-component is given by

Ez = 1
4πε0

q
r2 cos θ + 1

4πε0

q
r2 cos θ = 1

4πε0

2q
r2 cos θ.

Since none of the other components survive, this is the entire electric field, and it points in the k̂
direction. Notice that this calculation uses the principle of superposition; we calculate the fields of the
two charges independently and then add them together.
What we want to do now is replace the quantities in this expression that we don’t know (such as r), or
can’t easily measure (such as cos θ) with quantities that we do know, or can measure. In this case, by

geometry,

r2 = z2 + ⎛
⎝
d
2

⎞
⎠
2

and

cos θ = z
r = z

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2.

Thus, substituting,

E→ (z) = 1
4πε0

2q
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

z
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2 k̂ .

Simplifying, the desired answer is

(5.5)E→ (z) = 1
4πε0

2qz

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

3/2 k̂ .

b. If the source charges are equal and opposite, the vertical components cancel because

Ez = 1
4πε0

q
r2 cos θ − 1

4πε0

q
r2 cos θ = 0

and we get, for the horizontal component of E→ ,

E→ (z) = 1
4πε0

q
r2 sin θ i

^
− 1

4πε0

−q
r2 sin θ i

^

= 1
4πε0

2q
r2 sin θ i

^

= 1
4πε0

2q
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

⎛
⎝
d
2

⎞
⎠

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2 i
^

.

This becomes

(5.6)E→ (z) = 1
4πε0

qd

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

3/2 i
^

.
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5.3

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases d = 0 ,

z ≫ d , and z → ∞ , and confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., z ≫ d), the two source

charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let z ≫ d; then we

can neglect d2 in Equation 5.5 to obtain

lim
d → 0

E→ = 1
4πε0

2qz
⎡
⎣z2⎤

⎦
3/2 k̂

= 1
4πε0

2qz
z3 k̂

= 1
4πε0

⎛
⎝2q⎞

⎠

z2 k̂ ,

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for d ≪ z ≪ ∞ , this becomes

(5.7)E→ (z) = 1
4πε0

qd
z3 i

^
,

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of E→ are still

correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the denominator.)
If z is very large (z → ∞) , then E → 0 , as it should; the two charges “merge” and so cancel out.

Check Your Understanding What is the electric field due to a single point particle?

Try this simulation of electric field hockey (https://openstaxcollege.org/l/21elefielhocke) to get the
charge in the goal by placing other charges on the field.

5.5 | Calculating Electric Fields of Charge Distributions

Learning Objectives

By the end of this section, you will be able to:

• Explain what a continuous source charge distribution is and how it is related to the concept of
quantization of charge

• Describe line charges, surface charges, and volume charges

• Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast
with a continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous
rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal
pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most

204 Chapter 5 | Electric Charges and Fields

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

https://openstaxcollege.org/l/21elefielhocke


practical cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore
the discrete nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when
we deal with a bucket of water as a continuous fluid, rather than a collection of H2 O molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as
shown in Figure 5.22.

Figure 5.22 The configuration of charge differential elements for a (a) line charge, (b) sheet of
charge, and (c) a volume of charge. Also note that (d) some of the components of the total electric field
cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

• λ ≡ charge per unit length ( linear charge density); units are coulombs per meter (C/m)

• σ ≡ charge per unit area ( surface charge density); units are coulombs per square meter (C/m2)

• ρ ≡ charge per unit volume ( volume charge density); units are coulombs per cubic meter (C/m3)

Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an integral and
qi is replaced by dq = λdl , σdA , or ρdV , respectively:

(5.8)
Point charge: E→ (P) = 1

4πε0
∑
i = 1

N ⎛
⎝

qi
r2

⎞
⎠ r̂

(5.9)
Line charge: E→ (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠ r̂

(5.10)
Surface charge: E→ (P) = 1

4πε0
⌠
⌡surface

⎛
⎝

σdA
r2

⎞
⎠ r̂

(5.11)
Volume charge: E→ (P) = 1

4πε0
⌠
⌡volume

⎛
⎝

ρdV
r2

⎞
⎠ r̂

The integrals are generalizations of the expression for the field of a point charge. They implicitly include and assume the
principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for dl, dA, or
dV, as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of r in these equations: It is the distance from the charge element ⎛
⎝qi, λdl, σdA, ρdV ⎞

⎠ to the

location of interest, P(x, y, z) (the point in space where you want to determine the field). However, don’t confuse this with
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the meaning of r̂ ; we are using it and the vector notation E→ to write three integrals at once. That is, Equation 5.9 is

actually

Ex (P) = 1
4πε0

⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠x, Ey (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠y, Ez (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠z.

Example 5.5

Electric Field of a Line Segment

Find the electric field a distance z above the midpoint of a straight line segment of length L that carries a uniform
line charge density λ .

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of
length dl, each of which carries a differential amount of charge dq = λdl . Then, we calculate the differential

field created by two symmetrically placed pieces of the wire, using the symmetry of the setup to simplify the
calculation (Figure 5.23). Finally, we integrate this differential field expression over the length of the wire (half
of it, actually, as we explain below) to obtain the complete electric field expression.

Figure 5.23 A uniformly charged segment of wire. The
electric field at point P can be found by applying the
superposition principle to symmetrically placed charge elements
and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment,
from far away, it should look like a point charge. We will check the expression we get to see if it meets this
expectation.

The electric field for a line charge is given by the general expression

E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ .

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal
(x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this formally.

The total field E→ (P) is the vector sum of the fields from each of the two charge elements (call them E→ 1 and

E→ 2 , for now):

E→ (P) = E→ 1 + E→ 2 = E1x i
^

+ E1z k̂ + E2x
⎛
⎝− i

^⎞
⎠ + E2z k̂ .
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Because the two charge elements are identical and are the same distance away from the point P where we want to
calculate the field, E1x = E2x, so those components cancel. This leaves

E→ (P) = E1z k̂ + E2z k̂ = E1 cos θ k̂ + E2 cos θ k̂ .

These components are also equal, so we have

E→ (P) = 1
4πε0

⌠
⌡

λdl
r2 cos θ k̂ + 1

4πε0
⌠
⌡

λdl
r2 cos θ k̂

= 1
4πε0

⌠
⌡0

L/2
2λdx

r2 cos θ k̂

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that

lies on the x-axis. (The limits of integration are 0 to L
2 , not − L

2 to + L
2 , because we have constructed the net

field from two differential pieces of charge dq. If we integrated along the entire length, we would pick up an
erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables
that are not given. In this case, both r and θ change as we integrate outward to the end of the line charge, so those

are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

r = ⎛
⎝z2 + x2⎞

⎠
1/2

and

cos θ = z
r = z

⎛
⎝z2 + x2⎞

⎠
1/2.

Substituting, we obtain

E→ (P) = 1
4πε0

⌠
⌡0

L/2
2λdx

⎛
⎝z2 + x2⎞

⎠

z
⎛
⎝z2 + x2⎞

⎠
1/2 k̂

= 1
4πε0

⌠

⌡
⎮

0

L/2

2λz
⎛
⎝z2 + x2⎞

⎠
3/2dx k̂

= 2λz
4πε0

⎡

⎣
⎢ x
z2 z2 + x2

⎤

⎦
⎥|0L/2

k̂

which simplifies to

(5.12)E→ (z) = 1
4πε0

λL

z z2 + L2
4

k̂ .

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating
electric fields. The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and
may need to be calculated numerically by a computer.

Check Your Understanding How would the strategy used above change to calculate the electric field at
a point a distance z above one end of the finite line segment?
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Example 5.6

Electric Field of an Infinite Line of Charge

Find the electric field a distance z above the midpoint of an infinite line of charge that carries a uniform line
charge density λ .

Strategy

This is exactly like the preceding example, except the limits of integration will be −∞ to +∞ .

Solution

Again, the horizontal components cancel out, so we wind up with

E→ (P) = 1
4πε0

⌠
⌡−∞

∞
λdx
r2 cos θ k̂

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. Again,

cos θ = z
r = z

⎛
⎝z2 + x2⎞

⎠
1/2.

Substituting, we obtain

E→ (P) = 1
4πε0

⌠
⌡−∞

∞
λdx

⎛
⎝z2 + x2⎞

⎠

z
⎛
⎝z2 + x2⎞

⎠
1/2 k̂

= 1
4πε0

⌠

⌡
⎮

−∞

∞

λz
⎛
⎝z2 + x2⎞

⎠
3/2dx k̂

= λz
4πε0

⎡

⎣
⎢ x
z2 z2 + x2

⎤

⎦
⎥|−∞

∞

k̂ ,

which simplifies to

E→ (z) = 1
4πε0

2λ
z k̂ .

Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for z ≫ L , z2 dominates the L in the denominator, so that Equation 5.12

simplifies to

E→ ≈ 1
4πε0

λL
z2 k̂ .

If you recall that λL = q , the total charge on the wire, we have retrieved the expression for the field of a point charge, as

expected.

In the limit L → ∞ , on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length

is much, much greater than either of its other dimensions, and also much, much greater than the distance at which the field
is to be calculated:
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(5.13)E→ (z) = 1
4πε0

2λ
z k̂ .

An interesting artifact of this infinite limit is that we have lost the usual 1/r2 dependence that we are used to. This will

become even more intriguing in the case of an infinite plane.

Example 5.7

Electric Field due to a Ring of Charge

A ring has a uniform charge density λ , with units of coulomb per unit meter of arc. Find the electric potential at

a point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle.
We divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in
Figure 5.24.

Figure 5.24 The system and variable for calculating the
electric field due to a ring of charge.

Solution

The electric field for a line charge is given by the general expression

E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ .

A general element of the arc between θ and θ + dθ is of length Rdθ and therefore contains a charge equal to

λRdθ. The element is at a distance of r = z2 + R2 from P, the angle is cos ϕ = z
z2 + R2

, and therefore the

electric field is
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E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ = 1

4πε0
⌠
⌡0

2π
λRdθ

z2 + R2
z

z2 + R2
ẑ

= 1
4πε0

λRz
⎛
⎝z2 + R2⎞

⎠
3/2 ẑ ∫

0

2π
dθ = 1

4πε0
2πλRz

⎛
⎝z2 + R2⎞

⎠
3/2 ẑ

= 1
4πε0

qtot z
⎛
⎝z2 + R2⎞

⎠
3/2 ẑ .

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we
take the limit of z>>R , we find that

E→ ≈ 1
4πε0

qtot
z2 ẑ ,

as we expect.

Example 5.8

The Field of a Disk

Find the electric field of a circular thin disk of radius R and uniform charge density at a distance z above the center
of the disk (Figure 5.25)

Figure 5.25 A uniformly charged disk. As in the line charge
example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy

The electric field for a surface charge is given by

E→ (P) = 1
4πε0

⌠
⌡surface

σdA
r2 r̂ .

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the
shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components
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cancel and the field is entirely in the vertical ( k̂ ) direction. The vertical component of the electric field is

extracted by multiplying by cos θ , so

E→ (P) = 1
4πε0

⌠
⌡surface

σdA
r2 cos θ k̂ .

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

dA = 2πr ′ dr′
r2 = r′2 + z2

cos θ = z
⎛
⎝r′2 + z2⎞

⎠
1/2.

(Please take note of the two different “r’s” here; r is the distance from the differential ring of charge to the point
P where we wish to determine the field, whereas r′ is the distance from the center of the disk to the differential

ring of charge.) Also, we already performed the polar angle integral in writing down dA.

Solution

Substituting all this in, we get

E→ (P) = E→ (z) = 1
4πε0

⌠

⌡
⎮

0

R

σ(2πr′ dr′)z
⎛
⎝r′2 + z2⎞

⎠
3/2 k̂

= 1
4πε0

(2πσz)
⎛

⎝
⎜1
z − 1

R2 + z2

⎞

⎠
⎟k̂

or, more simply,

(5.14)
E→ (z) = 1

4πε0

⎛

⎝
⎜2πσ − 2πσz

R2 + z2

⎞

⎠
⎟k̂ .

Significance

Again, it can be shown (via a Taylor expansion) that when z ≫ R , this reduces to

E→ (z) ≈ 1
4πε0

σπR2

z2 k̂ ,

which is the expression for a point charge Q = σπR2.

Check Your Understanding How would the above limit change with a uniformly charged rectangle
instead of a disk?

As R → ∞ , Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much, much

greater than its thickness, and also much, much greater than the distance at which the field is to be calculated:

(5.15)E→ = σ
2ε0

k̂ .

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge.
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Does the plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how
far you are from it. It is important to note that Equation 5.15 is because we are above the plane. If we were below, the

field would point in the − k̂ direction.

Example 5.9

The Field of Two Infinite Planes

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities
(Figure 5.26).

Figure 5.26 Two charged infinite planes. Note the direction of
the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of
superposition to find the field from two.

Solution

The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the σ are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel

each other out to zero.

However, in the region between the planes, the electric fields add, and we get

E→ = σ
ε0

i
^

for the electric field. The i
^

is because in the figure, the field is pointing in the +x-direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform
electric fields.

Check Your Understanding What would the electric field look like in a system with two parallel
positively charged planes with equal charge densities?
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5.6 | Electric Field Lines

Learning Objectives

By the end of this section, you will be able to:

• Explain the purpose of an electric field diagram

• Describe the relationship between a vector diagram and a field line diagram

• Explain the rules for creating a field diagram and why these rules make physical sense

• Sketch the field of an arbitrary source charge

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of electric
fields. As mentioned earlier, our model is that the charge on an object (the source charge) alters space in the region around it
in such a way that when another charged object (the test charge) is placed in that region of space, that test charge experiences
an electric force. The concept of electric field lines, and of electric field line diagrams, enables us to visualize the way in
which the space is altered, allowing us to visualize the field. The purpose of this section is to enable you to create sketches
of this geometry, so we will list the specific steps and rules involved in creating an accurate and useful sketch of an electric
field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some pseudo-three-
dimensional images, several of the diagrams that you’ll see (both here, and in subsequent chapters) will be two-dimensional
projections, or cross-sections. Always keep in mind that in fact, you’re looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that field to experience
a force. By definition, electric field vectors point in the same direction as the electric force that a (hypothetical) positive test
charge would experience, if placed in the field (Figure 5.27)

Figure 5.27 The electric field of a positive point charge. A large number of field vectors are shown. Like all vector
arrows, the length of each vector is proportional to the magnitude of the field at each point. (a) Field in two
dimensions; (b) field in three dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since the electric
field is a vector, the arrows that we draw correspond at every point in space to both the magnitude and the direction of the
field at that point. As always, the length of the arrow that we draw corresponds to the magnitude of the field vector at that
point. For a point source charge, the length decreases by the square of the distance from the source charge. In addition, the
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direction of the field vector is radially away from the source charge, because the direction of the electric field is defined by
the direction of the force that a positive test charge would experience in that field. (Again, keep in mind that the actual field
is three-dimensional; there are also field lines pointing out of and into the page.)

This diagram is correct, but it becomes less useful as the source charge distribution becomes more complicated. For
example, consider the vector field diagram of a dipole (Figure 5.28).

Figure 5.28 The vector field of a dipole. Even with just two
identical charges, the vector field diagram becomes difficult to
understand.

There is a more useful way to present the same information. Rather than drawing a large number of increasingly smaller
vector arrows, we instead connect all of them together, forming continuous lines and curves, as shown in Figure 5.29.

Figure 5.29 (a) The electric field line diagram of a positive point charge. (b) The field line diagram
of a dipole. In both diagrams, the magnitude of the field is indicated by the field line density. The
field vectors (not shown here) are everywhere tangent to the field lines.
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Although it may not be obvious at first glance, these field diagrams convey the same information about the electric field as
do the vector diagrams. First, the direction of the field at every point is simply the direction of the field vector at that same
point. In other words, at any point in space, the field vector at each point is tangent to the field line at that same point. The
arrowhead placed on a field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines per unit
area passing through a small cross-sectional area perpendicular to the electric field. This field line density is drawn to be
proportional to the magnitude of the field at that cross-section. As a result, if the field lines are close together (that is, the
field line density is greater), this indicates that the magnitude of the field is large at that point. If the field lines are far apart
at the cross-section, this indicates the magnitude of the field is small. Figure 5.30 shows the idea.

Figure 5.30 Electric field lines passing through imaginary areas. Since the number of
lines passing through each area is the same, but the areas themselves are different, the
field line density is different. This indicates different magnitudes of the electric field at
these points.

In Figure 5.30, the same number of field lines passes through both surfaces (S and S′), but the surface S is larger than

surface S′ . Therefore, the density of field lines (number of lines per unit area) is larger at the location of S′ , indicating that

the electric field is stronger at the location of S′ than at S. The rules for creating an electric field diagram are as follows.

Problem-Solving Strategy: Drawing Electric Field Lines

1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on
negative charges or extend out to infinity.

2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that charge.
A charge of 2q will have twice as many lines as a charge of q.

3. At every point in space, the field vector at that point is tangent to the field line at that same point.
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4. The field line density at any point in space is proportional to (and therefore is representative of) the magnitude
of the field at that point in space.

5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two field
lines crossed at some point, that would imply that the electric field was pointing in two different directions at
a single point. This in turn would suggest that the (net) force on a test charge placed at that point would point
in two different directions. Since this is obviously impossible, it follows that field lines must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not physical
entities. Although the direction and relative intensity of the electric field can be deduced from a set of field lines, the lines
can also be misleading. For example, the field lines drawn to represent the electric field in a region must, by necessity, be
discrete. However, the actual electric field in that region exists at every point in space.

Field lines for three groups of discrete charges are shown in Figure 5.31. Since the charges in parts (a) and (b) have the
same magnitude, the same number of field lines are shown starting from or terminating on each charge. In (c), however, we
draw three times as many field lines leaving the +3q charge as entering the −q . The field lines that do not terminate at

−q emanate outward from the charge configuration, to infinity.

Figure 5.31 Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite
signs and different magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier to estimate,
predict, and therefore calculate the electric field of a source charge. The best way to develop this skill is with software
that allows you to place source charges and then will draw the net field upon request. We strongly urge you to search the
Internet for a program. Once you’ve found one you like, run several simulations to get the essential ideas of field diagram
construction. Then practice drawing field diagrams, and checking your predictions with the computer-drawn diagrams.

One example of a field-line drawing program (https://openstaxcollege.org/l/21fieldlindrapr) is from
the PhET “Charges and Fields” simulation.
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5.7 | Electric Dipoles

Learning Objectives

By the end of this section, you will be able to:

• Describe a permanent dipole

• Describe an induced dipole

• Define and calculate an electric dipole moment

• Explain the physical meaning of the dipole moment

Earlier we discussed, and calculated, the electric field of a dipole: two equal and opposite charges that are “close” to each
other. (In this context, “close” means that the distance d between the two charges is much, much less than the distance of
the field point P, the location where you are calculating the field.) Let’s now consider what happens to a dipole when it is

placed in an external field E→ . We assume that the dipole is a permanent dipole; it exists without the field, and does not

break apart in the external field.

Rotation of a Dipole due to an Electric Field
For now, we deal with only the simplest case: The external field is uniform in space. Suppose we have the situation depicted

in Figure 5.32, where we denote the distance between the charges as the vector d→ , pointing from the negative charge

to the positive charge. The forces on the two charges are equal and opposite, so there is no net force on the dipole. However,
there is a torque:

τ→ =
⎛

⎝
⎜ d→

2 × F→ +
⎞

⎠
⎟ +

⎛

⎝
⎜ − d→

2 × F→ −
⎞

⎠
⎟

=
⎡

⎣
⎢

⎛

⎝
⎜ d→

2
⎞

⎠
⎟ × ⎛

⎝+q E→ ⎞
⎠ +

⎛

⎝
⎜ − d→

2
⎞

⎠
⎟ × ⎛

⎝−q E→ ⎞
⎠
⎤

⎦
⎥

= q d→ × E→ .

Figure 5.32 A dipole in an external electric field. (a) The net force on the dipole is zero, but the net torque is not. As a result,
the dipole rotates, becoming aligned with the external field. (b) The dipole moment is a convenient way to characterize this

effect. The d→ points in the same direction as p→ .

The quantity q d→ (the magnitude of each charge multiplied by the vector distance between them) is a property of the

dipole; its value, as you can see, determines the torque that the dipole experiences in the external field. It is useful, therefore,
to define this product as the so-called dipole moment of the dipole:

(5.16)p→ ≡ q d→ .
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We can therefore write

(5.17)τ→ = p→ × E→ .

Recall that a torque changes the angular velocity of an object, the dipole, in this case. In this situation, the effect is to rotate

the dipole (that is, align the direction of p→ ) so that it is parallel to the direction of the external field.

Induced Dipoles
Neutral atoms are, by definition, electrically neutral; they have equal amounts of positive and negative charge. Furthermore,
since they are spherically symmetrical, they do not have a “built-in” dipole moment the way most asymmetrical molecules
do. They obtain one, however, when placed in an external electric field, because the external field causes oppositely directed
forces on the positive nucleus of the atom versus the negative electrons that surround the nucleus. The result is a new charge
distribution of the atom, and therefore, an induced dipole moment (Figure 5.33).

Figure 5.33 A dipole is induced in a neutral atom by an external electric field. The induced
dipole moment is aligned with the external field.

An important fact here is that, just as for a rotated polar molecule, the result is that the dipole moment ends up aligned
parallel to the external electric field. Generally, the magnitude of an induced dipole is much smaller than that of an inherent
dipole. For both kinds of dipoles, notice that once the alignment of the dipole (rotated or induced) is complete, the net effect

is to decrease the total electric field E→ total = E→ external + E→ dipole in the regions inside the dipole charges (Figure

5.34). By “inside” we mean in between the charges. This effect is crucial for capacitors, as you will see in Capacitance.

Figure 5.34 The net electric field is the vector sum of the
field of the dipole plus the external field.

Recall that we found the electric field of a dipole in Equation 5.7. If we rewrite it in terms of the dipole moment we get:
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E→ (z) = 1
4πε0

p→

z3 .

The form of this field is shown in Figure 5.34. Notice that along the plane perpendicular to the axis of the dipole and
midway between the charges, the direction of the electric field is opposite that of the dipole and gets weaker the further from
the axis one goes. Similarly, on the axis of the dipole (but outside it), the field points in the same direction as the dipole,
again getting weaker the further one gets from the charges.
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charging by induction

conduction electron

conductor

continuous charge distribution

coulomb

Coulomb force

Coulomb’s law

dipole

dipole moment

electric charge

electric field

electric force

electron

electrostatic attraction

electrostatic force

electrostatic repulsion

electrostatics

field line

field line density

induced dipole

infinite plane

infinite straight wire

insulator

ion

law of conservation of charge

linear charge density

neutron

permanent dipole

CHAPTER 5 REVIEW

KEY TERMS
process by which an electrically charged object brought near a neutral object creates a charge

separation in that object

electron that is free to move away from its atomic orbit

material that allows electrons to move separately from their atomic orbits; object with properties that allow
charges to move about freely within it

total source charge composed of so large a number of elementary charges that it must
be treated as continuous, rather than discrete

SI unit of electric charge

another term for the electrostatic force

mathematical equation calculating the electrostatic force vector between two charged particles

two equal and opposite charges that are fixed close to each other

property of a dipole; it characterizes the combination of distance between the opposite charges, and the
magnitude of the charges

physical property of an object that causes it to be attracted toward or repelled from another charged
object; each charged object generates and is influenced by a force called an electric force

physical phenomenon created by a charge; it “transmits” a force between a two charges

noncontact force observed between electrically charged objects

particle surrounding the nucleus of an atom and carrying the smallest unit of negative charge

phenomenon of two objects with opposite charges attracting each other

amount and direction of attraction or repulsion between two charged bodies; the assumption is that
the source charges remain motionless

phenomenon of two objects with like charges repelling each other

study of charged objects which are not in motion

smooth, usually curved line that indicates the direction of the electric field

number of field lines per square meter passing through an imaginary area; its purpose is to indicate the
field strength at different points in space

typically an atom, or a spherically symmetric molecule; a dipole created due to opposite forces
displacing the positive and negative charges

flat sheet in which the dimensions making up the area are much, much greater than its thickness, and also
much, much greater than the distance at which the field is to be calculated; its field is constant

straight wire whose length is much, much greater than either of its other dimensions, and also
much, much greater than the distance at which the field is to be calculated

material that holds electrons securely within their atomic orbits

atom or molecule with more or fewer electrons than protons

net electric charge of a closed system is constant

amount of charge in an element of a charge distribution that is essentially one-dimensional (the
width and height are much, much smaller than its length); its units are C/m

neutral particle in the nucleus of an atom, with (nearly) the same mass as a proton

typically a molecule; a dipole created by the arrangement of the charged particles from which the
dipole is created
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permittivity of vacuum

polarization

principle of superposition

proton

static electricity

superposition

surface charge density

volume charge density

also called the permittivity of free space, and constant describing the strength of the electric
force in a vacuum

slight shifting of positive and negative charges to opposite sides of an object

useful fact that we can simply add up all of the forces due to charges acting on an object

particle in the nucleus of an atom and carrying a positive charge equal in magnitude to the amount of negative
charge carried by an electron

buildup of electric charge on the surface of an object; the arrangement of the charge remains constant
(“static”)

concept that states that the net electric field of multiple source charges is the vector sum of the field of
each source charge calculated individually

amount of charge in an element of a two-dimensional charge distribution (the thickness is

small); its units are C/m2

amount of charge in an element of a three-dimensional charge distribution; its units are C/m3

KEY EQUATIONS
Coulomb’s law F→ 12(r) = 1

4πε0

q1 q2
r12

2 r̂ 12

Superposition of electric forces
F→ (r) = 1

4πε0
Q ∑

i = 1

N qi
ri

2 r̂ i

Electric force due to an electric field F→ = Q E→

Electric field at point P
E→ (P) ≡ 1

4πε0
∑
i = 1

N qi
ri

2 r̂ i

Field of an infinite wire E→ (z) = 1
4πε0

2λ
z k̂

Field of an infinite plane E→ = σ
2ε0

k̂

Dipole moment p→ ≡ q d→

Torque on dipole in external E-field τ→ = p→ × E→

SUMMARY

5.1 Electric Charge

• There are only two types of charge, which we call positive and negative. Like charges repel, unlike charges attract,
and the force between charges decreases with the square of the distance.

• The vast majority of positive charge in nature is carried by protons, whereas the vast majority of negative charge is
carried by electrons. The electric charge of one electron is equal in magnitude and opposite in sign to the charge of
one proton.

• An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.

• The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal

magnitude; the magnitude of this basic charge is e ≡ 1.602 × 10−19 C
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• Both positive and negative charges exist in neutral objects and can be separated by bringing the two objects into
physical contact; rubbing the objects together can remove electrons from the bonds in one object and place them on
the other object, increasing the charge separation.

• For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion
of electrons.

• The law of conservation of charge states that the net charge of a closed system is constant.

5.2 Conductors, Insulators, and Charging by Induction

• A conductor is a substance that allows charge to flow freely through its atomic structure.

• An insulator holds charge fixed in place.

• Polarization is the separation of positive and negative charges in a neutral object. Polarized objects have their
positive and negative charges concentrated in different areas, giving them a charge distribution.

5.3 Coulomb's Law

• Coulomb’s law gives the magnitude of the force between point charges. It is

F→ 12(r) = 1
4πε0

q1 q2
r12

2 r̂ 12

where q2 and q2 are two point charges separated by a distance r. This Coulomb force is extremely basic,

since most charges are due to point-like particles. It is responsible for all electrostatic effects and underlies most
macroscopic forces.

5.4 Electric Field

• The electric field is an alteration of space caused by the presence of an electric charge. The electric field mediates
the electric force between a source charge and a test charge.

• The electric field, like the electric force, obeys the superposition principle

• The field is a vector; by definition, it points away from positive charges and toward negative charges.

5.5 Calculating Electric Fields of Charge Distributions

• A very large number of charges can be treated as a continuous charge distribution, where the calculation of the field
requires integration. Common cases are:

◦ one-dimensional (like a wire); uses a line charge density λ

◦ two-dimensional (metal plate); uses surface charge density σ

◦ three-dimensional (metal sphere); uses volume charge density ρ

• The “source charge” is a differential amount of charge dq. Calculating dq depends on the type of source charge
distribution:

dq = λdl; dq = σdA; dq = ρdV .
• Symmetry of the charge distribution is usually key.

• Important special cases are the field of an “infinite” wire and the field of an “infinite” plane.

5.6 Electric Field Lines

• Electric field diagrams assist in visualizing the field of a source charge.

• The magnitude of the field is proportional to the field line density.

• Field vectors are everywhere tangent to field lines.
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5.7 Electric Dipoles

• If a permanent dipole is placed in an external electric field, it results in a torque that aligns it with the external field.

• If a nonpolar atom (or molecule) is placed in an external field, it gains an induced dipole that is aligned with the
external field.

• The net field is the vector sum of the external field plus the field of the dipole (physical or induced).

• The strength of the polarization is described by the dipole moment of the dipole, p→ = q d→ .

CONCEPTUAL QUESTIONS

5.1 Electric Charge

1. There are very large numbers of charged particles in
most objects. Why, then, don’t most objects exhibit static
electricity?

2. Why do most objects tend to contain nearly equal
numbers of positive and negative charges?

3. A positively charged rod attracts a small piece of cork.
(a) Can we conclude that the cork is negatively charged?
(b) The rod repels another small piece of cork. Can we
conclude that this piece is positively charged?

4. Two bodies attract each other electrically. Do they both
have to be charged? Answer the same question if the bodies
repel one another.

5. How would you determine whether the charge on a
particular rod is positive or negative?

5.2 Conductors, Insulators, and Charging by

Induction

6. An eccentric inventor attempts to levitate a cork ball by
wrapping it with foil and placing a large negative charge
on the ball and then putting a large positive charge on
the ceiling of his workshop. Instead, while attempting to
place a large negative charge on the ball, the foil flies off.
Explain.

7. When a glass rod is rubbed with silk, it becomes
positive and the silk becomes negative—yet both attract
dust. Does the dust have a third type of charge that is
attracted to both positive and negative? Explain.

8. Why does a car always attract dust right after it is
polished? (Note that car wax and car tires are insulators.)

9. Does the uncharged conductor shown below experience
a net electric force?

10. While walking on a rug, a person frequently becomes
charged because of the rubbing between his shoes and the
rug. This charge then causes a spark and a slight shock
when the person gets close to a metal object. Why are these
shocks so much more common on a dry day?

11. Compare charging by conduction to charging by
induction.

12. Small pieces of tissue are attracted to a charged comb.
Soon after sticking to the comb, the pieces of tissue are
repelled from it. Explain.

13. Trucks that carry gasoline often have chains dangling
from their undercarriages and brushing the ground. Why?

14. Why do electrostatic experiments work so poorly in
humid weather?

15. Why do some clothes cling together after being
removed from the clothes dryer? Does this happen if
they’re still damp?

16. Can induction be used to produce charge on an
insulator?
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17. Suppose someone tells you that rubbing quartz with
cotton cloth produces a third kind of charge on the quartz.
Describe what you might do to test this claim.

18. A handheld copper rod does not acquire a charge when
you rub it with a cloth. Explain why.

19. Suppose you place a charge q near a large metal plate.
(a) If q is attracted to the plate, is the plate necessarily
charged? (b) If q is repelled by the plate, is the plate
necessarily charged?

5.3 Coulomb's Law

20. Would defining the charge on an electron to be
positive have any effect on Coulomb’s law?

21. An atomic nucleus contains positively charged protons
and uncharged neutrons. Since nuclei do stay together, what
must we conclude about the forces between these nuclear
particles?

22. Is the force between two fixed charges influenced by
the presence of other charges?

5.4 Electric Field

23. When measuring an electric field, could we use a
negative rather than a positive test charge?

24. During fair weather, the electric field due to the net
charge on Earth points downward. Is Earth charged
positively or negatively?

25. If the electric field at a point on the line between two
charges is zero, what do you know about the charges?

26. Two charges lie along the x-axis. Is it true that the
net electric field always vanishes at some point (other than
infinity) along the x-axis?

5.5 Calculating Electric Fields of Charge

Distributions

27. Give a plausible argument as to why the electric field
outside an infinite charged sheet is constant.

28. Compare the electric fields of an infinite sheet of
charge, an infinite, charged conducting plate, and infinite,
oppositely charged parallel plates.

29. Describe the electric fields of an infinite charged plate
and of two infinite, charged parallel plates in terms of the
electric field of an infinite sheet of charge.

30. A negative charge is placed at the center of a ring of
uniform positive charge. What is the motion (if any) of the
charge? What if the charge were placed at a point on the
axis of the ring other than the center?

5.6 Electric Field Lines

31. If a point charge is released from rest in a uniform
electric field, will it follow a field line? Will it do so if the
electric field is not uniform?

32. Under what conditions, if any, will the trajectory of a
charged particle not follow a field line?

33. How would you experimentally distinguish an electric
field from a gravitational field?

34. A representation of an electric field shows 10 field
lines perpendicular to a square plate. How many field lines
should pass perpendicularly through the plate to depict a
field with twice the magnitude?

35. What is the ratio of the number of electric field lines
leaving a charge 10q and a charge q?

5.7 Electric Dipoles

36. What are the stable orientation(s) for a dipole in an
external electric field? What happens if the dipole is
slightly perturbed from these orientations?

PROBLEMS

5.1 Electric Charge

37. Common static electricity involves charges ranging
from nanocoulombs to microcoulombs. (a) How many
electrons are needed to form a charge of −2.00 nC? (b) How
many electrons must be removed from a neutral object to
leave a net charge of 0.500 µC ?

38. If 1.80 × 1020 electrons move through a pocket

calculator during a full day’s operation, how many
coulombs of charge moved through it?

39. To start a car engine, the car battery moves

3.75 × 1021 electrons through the starter motor. How

many coulombs of charge were moved?
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40. A certain lightning bolt moves 40.0 C of charge. How
many fundamental units of charge is this?

41. A 2.5-g copper penny is given a charge of

−2.0 × 10−9 C . (a) How many excess electrons are on the

penny? (b) By what percent do the excess electrons change
the mass of the penny?

42. A 2.5-g copper penny is given a charge of

4.0 × 10−9 C . (a) How many electrons are removed from

the penny? (b) If no more than one electron is removed
from an atom, what percent of the atoms are ionized by this
charging process?

5.2 Conductors, Insulators, and Charging by

Induction

43. Suppose a speck of dust in an electrostatic precipitator

has 1.0000 × 1012 protons in it and has a net charge of

−5.00 nC (a very large charge for a small speck). How
many electrons does it have?

44. An amoeba has 1.00 × 1016 protons and a net charge

of 0.300 pC. (a) How many fewer electrons are there than
protons? (b) If you paired them up, what fraction of the
protons would have no electrons?

45. A 50.0-g ball of copper has a net charge of 2.00 µC .

What fraction of the copper’s electrons has been removed?
(Each copper atom has 29 protons, and copper has an
atomic mass of 63.5.)

46. What net charge would you place on a 100-g piece

of sulfur if you put an extra electron on 1 in 1012 of its

atoms? (Sulfur has an atomic mass of 32.1 u.)

47. How many coulombs of positive charge are there in
4.00 kg of plutonium, given its atomic mass is 244 and that
each plutonium atom has 94 protons?

5.3 Coulomb's Law

48. Two point particles with charges +3 µC and +5 µC
are held in place by 3-N forces on each charge in
appropriate directions. (a) Draw a free-body diagram for
each particle. (b) Find the distance between the charges.

49. Two charges +3 µC and +12 µC are fixed 1 m

apart, with the second one to the right. Find the magnitude
and direction of the net force on a −2-nC charge when
placed at the following locations: (a) halfway between the
two (b) half a meter to the left of the +3 µC charge (c)

half a meter above the +12 µC charge in a direction

perpendicular to the line joining the two fixed charges

50. In a salt crystal, the distance between adjacent sodium

and chloride ions is 2.82 × 10−10 m. What is the force of

attraction between the two singly charged ions?

51. Protons in an atomic nucleus are typically 10−15 m
apart. What is the electric force of repulsion between
nuclear protons?

52. Suppose Earth and the Moon each carried a net
negative charge −Q. Approximate both bodies as point
masses and point charges.

(a) What value of Q is required to balance the gravitational
attraction between Earth and the Moon?

(b) Does the distance between Earth and the Moon affect
your answer? Explain.

(c) How many electrons would be needed to produce this
charge?

53. Point charges q1 = 50 µC and q2 = −25 µC are

placed 1.0 m apart. What is the force on a third charge
q3 = 20 µC placed midway between q1 and q2 ?

54. Where must q3 of the preceding problem be placed

so that the net force on it is zero?

55. Two small balls, each of mass 5.0 g, are attached to
silk threads 50 cm long, which are in turn tied to the same
point on the ceiling, as shown below. When the balls are
given the same charge Q, the threads hang at 5.0° to the

vertical, as shown below. What is the magnitude of Q?
What are the signs of the two charges?
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56. Point charges Q1 = 2.0 µC and Q2 = 4.0 µC are

located at r→ 1 = (4.0 i
^

− 2.0 j
^

+ 5.0 k̂ )m and

r→ 2 = (8.0 i
^

+ 5.0 j
^

− 9.0 k̂ )m . What is the force of

Q2 on Q1 ?

57. The net excess charge on two small spheres (small
enough to be treated as point charges) is Q. Show that the
force of repulsion between the spheres is greatest when
each sphere has an excess charge Q/2. Assume that the
distance between the spheres is so large compared with
their radii that the spheres can be treated as point charges.

58. Two small, identical conducting spheres repel each
other with a force of 0.050 N when they are 0.25 m apart.
After a conducting wire is connected between the spheres
and then removed, they repel each other with a force of
0.060 N. What is the original charge on each sphere?

59. A charge q = 2.0 µC is placed at the point P shown

below. What is the force on q?

60. What is the net electric force on the charge located at
the lower right-hand corner of the triangle shown here?

61. Two fixed particles, each of charge 5.0 × 10−6 C,
are 24 cm apart. What force do they exert on a third particle

of charge −2.5 × 10−6 C that is 13 cm from each of

them?

62. The charges

q1 = 2.0 × 10−7 C, q2 = −4.0 × 10−7 C, and

q3 = −1.0 × 10−7 C are placed at the corners of the

triangle shown below. What is the force on q1?

63. What is the force on the charge q at the lower-right-
hand corner of the square shown here?

64. Point charges q1 = 10 µC and q2 = −30 µC are

fixed at r1 = ⎛
⎝3.0 i

^
− 4.0 j

^⎞
⎠m and

r2 = ⎛
⎝9.0 i

^
+ 6.0 j

^⎞
⎠m. What is the force of q2 on q1 ?
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5.4 Electric Field

65. A particle of charge 2.0 × 10−8 C experiences an

upward force of magnitude 4.0 × 10−6 N when it is

placed in a particular point in an electric field. (a) What
is the electric field at that point? (b) If a charge

q = −1.0 × 10−8 C is placed there, what is the force on

it?

66. On a typical clear day, the atmospheric electric field
points downward and has a magnitude of approximately
100 N/C. Compare the gravitational and electric forces on

a small dust particle of mass 2.0 × 10−15 g that carries

a single electron charge. What is the acceleration (both
magnitude and direction) of the dust particle?

67. Consider an electron that is 10−10 m from an alpha

particle (q = 3.2 × 10−19 C). (a) What is the electric

field due to the alpha particle at the location of the electron?
(b) What is the electric field due to the electron at the
location of the alpha particle? (c) What is the electric force
on the alpha particle? On the electron?

68. Each the balls shown below carries a charge q and has
a mass m. The length of each thread is l, and at equilibrium,
the balls are separated by an angle 2θ . How does θ vary

with q and l? Show that θ satisfies

sin(θ)2 tan(θ) = q2

16πε0 gl2 m
.

69. What is the electric field at a point where the force on a

−2.0 × 10−6 −C charge is
⎛
⎝4.0 i

^
− 6.0 j

^⎞
⎠ × 10−6 N?

70. A proton is suspended in the air by an electric field
at the surface of Earth. What is the strength of this electric

field?

71. The electric field in a particular thundercloud is

2.0 × 105 N/C. What is the acceleration of an electron in

this field?

72. A small piece of cork whose mass is 2.0 g is given a

charge of 5.0 × 10−7 C. What electric field is needed to

place the cork in equilibrium under the combined electric
and gravitational forces?

73. If the electric field is 100 N/C at a distance of 50 cm

from a point charge q, what is the value of q?

74. What is the electric field of a proton at the first Bohr

orbit for hydrogen (r = 5.29 × 10−11 m)? What is the

force on the electron in that orbit?

75. (a) What is the electric field of an oxygen nucleus at

a point that is 10−10 m from the nucleus? (b) What is the

force this electric field exerts on a second oxygen nucleus
placed at that point?

76. Two point charges, q1 = 2.0 × 10−7 C and

q2 = −6.0 × 10−8 C, are held 25.0 cm apart. (a) What is

the electric field at a point 5.0 cm from the negative charge
and along the line between the two charges? (b)What is the
force on an electron placed at that point?

77. Point charges q1 = 50 µC and q2 = −25 µC are

placed 1.0 m apart. (a) What is the electric field at a point
midway between them? (b) What is the force on a charge
q3 = 20 µC situated there?

78. Can you arrange the two point charges

q1 = −2.0 × 10−6 C and q2 = 4.0 × 10−6 C along the

x-axis so that E = 0 at the origin?

79. Point charges q1 = q2 = 4.0 × 10−6 C are fixed on

the x-axis at x = −3.0 m and x = 3.0 m. What charge

q must be placed at the origin so that the electric field
vanishes at x = 0, y = 3.0 m?

5.5 Calculating Electric Fields of Charge

Distributions

80. A thin conducting plate 1.0 m on the side is given a

charge of −2.0 × 10−6 C . An electron is placed 1.0 cm

above the center of the plate. What is the acceleration of the
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electron?

81. Calculate the magnitude and direction of the electric
field 2.0 m from a long wire that is charged uniformly at

λ = 4.0 × 10−6 C/m.

82. Two thin conducting plates, each 25.0 cm on a side,
are situated parallel to one another and 5.0 mm apart. If

10−11 electrons are moved from one plate to the other,

what is the electric field between the plates?

83. The charge per unit length on the thin rod shown
below is λ . What is the electric field at the point P? (Hint:

Solve this problem by first considering the electric field

d E→ at P due to a small segment dx of the rod, which

contains charge dq = λdx . Then find the net field by

integrating d E→ over the length of the rod.)

84. The charge per unit length on the thin semicircular
wire shown below is λ . What is the electric field at the

point P?

85. Two thin parallel conducting plates are placed 2.0 cm
apart. Each plate is 2.0 cm on a side; one plate carries a net
charge of 8.0 µC, and the other plate carries a net charge

of −8.0 µC. What is the charge density on the inside

surface of each plate? What is the electric field between the
plates?

86. A thin conducing plate 2.0 m on a side is given a total
charge of −10.0 µC . (a) What is the electric field 1.0 cm
above the plate? (b) What is the force on an electron at
this point? (c) Repeat these calculations for a point 2.0 cm
above the plate. (d) When the electron moves from 1.0 to
2,0 cm above the plate, how much work is done on it by the
electric field?

87. A total charge q is distributed uniformly along a thin,
straight rod of length L (see below). What is the electric
field at P1? At P2?

88. Charge is distributed along the entire x-axis with
uniform density λ. How much work does the electric field

of this charge distribution do on an electron that moves
along the y-axis from y = a to y = b?

89. Charge is distributed along the entire x-axis with
uniform density λx and along the entire y-axis with

uniform density λy. Calculate the resulting electric field at

(a) r→ = a i
^

+ b j
^

and (b) r→ = c k̂ .

90. A rod bent into the arc of a circle subtends an angle
2θ at the center P of the circle (see below). If the rod is

charged uniformly with a total charge Q, what is the electric
field at P?

91. A proton moves in the electric field

E→ = 200 i
^

N/C. (a) What are the force on and the

acceleration of the proton? (b) Do the same calculation for
an electron moving in this field.

92. An electron and a proton, each starting from rest, are
accelerated by the same uniform electric field of 200 N/C.
Determine the distance and time for each particle to acquire

a kinetic energy of 3.2 × 10−16 J.

93. A spherical water droplet of radius 25 µm carries an

excess 250 electrons. What vertical electric field is needed
to balance the gravitational force on the droplet at the
surface of the earth?

94. A proton enters the uniform electric field produced
by the two charged plates shown below. The magnitude of

the electric field is 4.0 × 105 N/C, and the speed of the

proton when it enters is 1.5 × 107 m/s. What distance d

has the proton been deflected downward when it leaves the
plates?
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95. Shown below is a small sphere of mass 0.25 g that

carries a charge of 9.0 × 10−10 C. The sphere is attached

to one end of a very thin silk string 5.0 cm long. The other
end of the string is attached to a large vertical conducting

plate that has a charge density of 30 × 10−6 C/m2. What

is the angle that the string makes with the vertical?

96. Two infinite rods, each carrying a uniform charge
density λ, are parallel to one another and perpendicular

to the plane of the page. (See below.) What is the electrical
field at P1? At P2?

97. Positive charge is distributed with a uniform density
λ along the positive x-axis from r to ∞, along the

positive y-axis from r to ∞, and along a 90° arc of a

circle of radius r, as shown below. What is the electric field
at O?

98. From a distance of 10 cm, a proton is projected with a

speed of v = 4.0 × 106 m/s directly at a large, positively

charged plate whose charge density is

σ = 2.0 × 10−5 C/m2. (See below.) (a) Does the proton

reach the plate? (b) If not, how far from the plate does it
turn around?

99. A particle of mass m and charge −q moves along

a straight line away from a fixed particle of charge Q.
When the distance between the two particles is r0, −q is

moving with a speed v0. (a) Use the work-energy theorem

to calculate the maximum separation of the charges. (b)
What do you have to assume about v0 to make this

calculation? (c) What is the minimum value of v0 such that

−q escapes from Q?

5.6 Electric Field Lines

100. Which of the following electric field lines are
incorrect for point charges? Explain why.
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101. In this exercise, you will practice drawing electric
field lines. Make sure you represent both the magnitude
and direction of the electric field adequately. Note that the
number of lines into or out of charges is proportional to the
charges.

(a) Draw the electric field lines map for two charges
+20 µC and −20 µC situated 5 cm from each other.

(b) Draw the electric field lines map for two charges
+20 µC and +20 µC situated 5 cm from each other.

(c) Draw the electric field lines map for two charges
+20 µC and −30 µC situated 5 cm from each other.

102. Draw the electric field for a system of three particles
of charges +1 µC, +2 µC, and −3 µC fixed at the

corners of an equilateral triangle of side 2 cm.

103. Two charges of equal magnitude but opposite sign
make up an electric dipole. A quadrupole consists of two
electric dipoles are placed anti-parallel at two edges of a

square as shown.

Draw the electric field of the charge distribution.

104. Suppose the electric field of an isolated point charge

decreased with distance as 1/r2 + δ rather than as 1/r2 .

Show that it is then impossible to draw continous field lines
so that their number per unit area is proportional to E.

5.7 Electric Dipoles

105. Consider the equal and opposite charges shown
below. (a) Show that at all points on the x-axis for which

|x| ≫ a, E ≈ Qa/2πε0 x3. (b) Show that at all points on

the y-axis for which |y| ≫ a, E ≈ Qa/πε0 y3.

106. (a) What is the dipole moment of the configuration
shown above? If Q = 4.0 µC , (b) what is the torque on

this dipole with an electric field of 4.0 × 105 N/C i
^

? (c)

What is the torque on this dipole with an electric field of

−4.0 × 105 N/C i
^

? (d) What is the torque on this dipole

with an electric field of ±4.0 × 105 N/C j
^

?

107. A water molecule consists of two hydrogen atoms
bonded with one oxygen atom. The bond angle between
the two hydrogen atoms is 104° (see below). Calculate

the net dipole moment of a water molecule that is placed
in a uniform, horizontal electric field of magnitude

2.3 × 10−8 N/C. (You are missing some information for

solving this problem; you will need to determine what
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information you need, and look it up.)

ADDITIONAL PROBLEMS

108. Point charges q1 = 2.0 µC and q1 = 4.0 µC are

located at r1 = ⎛
⎝4.0 i

^
− 2.0 j

^
+ 2.0 k̂⎞

⎠m and

r2 = ⎛
⎝8.0 i

^
+ 5.0 j

^
− 9.0 k̂⎞

⎠m . What is the force of

q2 on q1?

109. What is the force on the 5.0-µC charge shown

below?

110. What is the force on the 2.0-µC charge placed at the

center of the square shown below?

111. Four charged particles are positioned at the corners

of a parallelogram as shown below. If q = 5.0 µC and

Q = 8.0 µC, what is the net force on q?

112. A charge Q is fixed at the origin and a second charge
q moves along the x-axis, as shown below. How much work
is done on q by the electric force when q moves from
x1 to x2?

113. A charge q = −2.0 µC is released from rest when

it is 2.0 m from a fixed charge Q = 6.0 µC. What is the

kinetic energy of q when it is 1.0 m from Q?

114. What is the electric field at the midpoint M of the
hypotenuse of the triangle shown below?
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115. Find the electric field at P for the charge
configurations shown below.

116. (a) What is the electric field at the lower-right-hand
corner of the square shown below? (b) What is the force on
a charge q placed at that point?

117. Point charges are placed at the four corners of a

rectangle as shown below: q1 = 2.0 × 10−6 C,

q2 = −2.0 × 10−6 C, q3 = 4.0 × 10−6 C, and

q4 = 1.0 × 10−6 C. What is the electric field at P?

118. Three charges are positioned at the corners of a
parallelogram as shown below. (a) If Q = 8.0 µC, what is

the electric field at the unoccupied corner? (b) What is the
force on a 5.0-µC charge placed at this corner?

119. A positive charge q is released from rest at the origin
of a rectangular coordinate system and moves under the

influence of the electric field E→ = E0 (1 + x/a) i
^

. What

is the kinetic energy of q when it passes through x = 3a?

120. A particle of charge −q and mass m is placed at the

center of a uniformaly charged ring of total charge Q and
radius R. The particle is displaced a small distance along
the axis perpendicular to the plane of the ring and released.
Assuming that the particle is constrained to move along the
axis, show that the particle oscillates in simple harmonic

motion with a frequency f = 1
2π

qQ
4πε0 mR3.
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121. Charge is distributed uniformly along the entire
y-axis with a density λy and along the positive x-axis

from x = a to x = b with a density λx. What is the force

between the two distributions?

122. The circular arc shown below carries a charge per
unit length λ = λ0 cos θ, where θ is measured from the

x-axis. What is the electric field at the origin?

123. Calculate the electric field due to a uniformly
charged rod of length L, aligned with the x-axis with one
end at the origin; at a point P on the z-axis.

124. The charge per unit length on the thin rod shown
below is λ. What is the electric force on the point charge

q? Solve this problem by first considering the electric force

d F→ on q due to a small segment dx of the rod, which

contains charge λdx. Then, find the net force by

integrating d F→ over the length of the rod.

125. The charge per unit length on the thin rod shown here
is λ. What is the electric force on the point charge q? (See

the preceding problem.)

126. The charge per unit length on the thin semicircular
wire shown below is λ. What is the electric force on the

point charge q? (See the preceding problems.)
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